在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。下面是小编为大家整理的数学大全,欢迎阅读与借鉴,谢谢!
1.数统治着宇宙。毕达哥拉斯
2.数学的本质在于它的自由。DD康托尔
3.数学是各式各样的证明技巧。维特根斯坦
4.在数学中最令我欣喜的,是那些能够被证明的东西。罗素
5.在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。DD康托尔
6.非数学归纳法在数学的研究中,起着不可缺少的作用。舒尔(I.Schur)
7.我总是尽我的精力和才能来摆脱那种繁重而单调的计算。纳皮尔
8.我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。贝尔斯
9.可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。麦克斯韦
10.多数的数学创造是直觉的结果,对事实多少有点儿直接的知觉或快速的理解,而与任何冗长的或形式的推理过程无关。卢卡斯(WilliamF.Lucas)
11.如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。柏拉图
12.一个没有几分诗人气的数学家永远成不了一个完全的数学家。维尔斯特拉斯
13.我曾听到有人说我是数学的反对者,是数学的敌人,但没有人比我更尊重数学,因为它完成了我不曾得到其成就的业绩。DD哥德
14.宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。华罗庚
15.数学是除了语言与音乐之外,人类心灵自由创造力的主要表达方式之一,而且数学是经由理论的建构成为了解宇宙万物的媒介。因此,数学必需保持为知识,技能与文化的主要构成要素,而知识与技能是得传授给下一代,文化则得传承给下一代的。录自德国数学家HermannWeyl
16.没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。希尔伯特(Hilbert)
17.一个国家只有数学蓬勃的发展,才能展现它国立的强大。数学的发展和至善和国家繁荣昌盛密切相关。拿破仑
18.数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。高斯
19.新的数学方法和概念,常常比解决数学问题本身更重要。华罗庚
20.给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。AL柯西
21.上帝创造了整数,所有其余的数都是人造的。L克隆内克
22.问题是数学的心脏。P.R.Halmos
23.数学,科学的女皇;数论,数学的女皇。CF高斯
24.给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。高斯
25.这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。DDA.N.怀特海
26.不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。罗巴切夫斯基
27.数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。A埃博
28.无限!再也没有其他问题如此深刻地打动过人类的心灵。希尔伯特
29.给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。柯西
30.一个数学家越超脱越好。无名氏
31.数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。史密斯
32.数学主要的目标是公众的利益和自然现象的解释。傅立叶
33.发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。CG达尔文
34.数学发明创造的动力不是推理,而是想象力的发挥。德摩
35.纯数学是魔术家真正的魔杖。诺瓦列斯
36.数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。埃博
37.纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。怀德海
38.无限!再也没有其他问题如此深刻地打动过人类的心灵。D希尔伯特
39.第一是数学,第二是数学,第三是数学。伦琴
40.数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。开普勒
41.只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。Hilbert
42.上帝创造了整数,所有其余的数都是人造的。 克隆内克
43.数学发明创造的动力不是推理,而是想象力的发挥。德摩
44.非数学归纳法在数学的研究中,起着不可缺少的作用。 舒尔(I.Schur)
45.纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。怀德海
46.无限!再也没有其他问题如此深刻地打动过人类的心灵。希尔伯特
47.发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。达尔文
48.给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。柯西
49.如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。柏拉图
50.我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。贝尔斯