人教版七年级数学下册《 幂的运算 小结与思考》教学设计

语文教案 2019-4-3 632

课题:幂的运算的小结与思考
教学目标:
能说出幂的运算的性质;
会运用幂的运算性质进行计算,并能说出每一步的依据;
能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;
通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:
运用幂的运算性质进行计算
教学难点:
运用幂的运算性质进行证明规律
教学方法:
引导发现,合作交流,充分体现学生的主体地位
系统梳理知识:
幂的运算:1、同底数幂的乘法
2、幂的乘方
3、积的乘方
4、同底数幂的除法:(1)零指数幂 (2)负整数指数幂
请你用字母表示以上运算法则。你认为本章的学习中应该注意哪些问题?
例题精讲:
例1 判断下列等式是否成立:
①(-x)2=-x2,
②(-x3)=-(-x)3,
③(x-y)2=(y-x)2,
④(x-y)3=(y-x)3,
⑤x-a-b=x-(a+b),
⑥x+a-b=x-(b-a).
解:③⑤⑥成立.
例2 已知10m=4,10n=5,求103m+2n的值.
解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25.
所以103m+2n=103m×102n=64×25=1680
例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.
解:∵2m=x-1,
∴y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.
例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<13×24>=2,则<210>=______.
解 210=(24)2·22=162·4,
∴ <210>=<6×4>=4

不坑老师小灶资源(限时开启) ¥ 199