必考▲重点√了解
复习重点:七至十单元测试卷
相交线与平行线
【知识点】√
▲平面上不相重合的两条直线之间的位置关系为_______或________
两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。P3 例;P8 2题;P9 7题;P35 2(2);P35 3题
两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
垂直三要素:垂直关系,垂直记号,垂足
做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可。
做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。
垂直公理:过一点有且只有一条直线与已知直线垂直。
垂线段最短;
点到直线的距离:直线外一点到这条直线的垂线段的长度。
两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。
P7 例、练习1
平行公理:过直线外一点有且只有一条直线与已知直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c P17 4题
平行线的判定。P15 例 结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
P15 练习;P17 7题;P36 8题。
平行线的性质。P21 练习1,2;P23 6题
★命题:“如果+题设,那么+结论。”P22练习1
真、假命题P24 11题;P37 12题
平移的性质P28归纳
三角形和多边形
三角形内角和定理★
【重点题目】P76 3
例:三角形三个内角之比为2:3:4,则他们的度数分别为_____________
构成三角形满足的条件:三角形两边之和大于第三边。
判断方法:在△ABC中,a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+bc)不能构成三角形(即三角形最短的两边之和大于最长的边)
【重点题目】P64例;P69 2,6;P70 7
三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)
【重点题目】三角形的两边分别为3和7,则三角形的第三边的取值范围为_____________
等面积法:三角形面积底高,三角形